

LCA of biopolymers – SYNPOL case study

AGENDA

- 1. LCA methodology
- 2. Biopolymers definition and examples
- 3. Biopolymers life cycle and examples (incl. SYNPOL)
- 4. Conclusions

LIFE CYCLE ASSESSMENT (LCA)

- Cradle-to-grave (incl. waste treatment)
- Cradle-to-gate (certain point, e.g. factory gate)
- Cradle-to-cradle (incl. recycling)
- Gate-to-gate (limited part)
- Guidelines
 - o ISO 14040/14044
 - ILCD Handbook
- Standard methodology
 - ILCD 2011 Midpoint+
 - ReCiPe Midpoint & Endpoint
 - o IPCC 2013
- Ecoinvent database

LCA EXAMPLE

- What do we want to know?
 - Functional unit (FU): 5 pancakes
- O What are in- and outputs?
 - Data inventory throughout the life cycle
 (preparation, baking, etc.): flour, eegs, milk,
 heat, CO₂ emissions, ...)
- O What is the impact on the environment?
 - Just climate change
 - o or 16 impact categories
- Reference scenario
 - Functional equivalent (e.g. fruit salad)

IMPACT CATEGORIES

Climate change

Ozone depletion

Human toxicity, non-cancer effects

Human toxicity, cancer effects

Particulate matter

Ionizing radiation HH

Ionizing radiation E

Photochemical ozone formation

Acidification

Terrestrial eutrophication

Freshwater eutrophication

Marine eutrophication

Freshwater ecotoxicity

Land use

Water resource depletion

Mineral, fossil & renewable

resource depletion

CLIMATE CHANGE IMPACT

Climate change impact of 5 pancakes

COMPARISON WITH REFERENCE

BIOPOLYMERS

What are BIOPOLYMERS?

- ➤ Polymers produced by living organisms (Cellulose, Lignin, Starch, ...)
- ➤ Polymers as materials mainly packaging (PLA, TPS, PHA, Bio-PE, ...)

Biopolymer = Biodegradable (PLA, PHA, TPS)

Biopolymer ≠ Biodegradable (BioPE, BioPET)

Biopolymer = Biobased (PLA, PHA, TPS)

Biopolymer ≠ Biobased (PBAT, PBS, PCL)

LIFE CYCLE - BIOBASED POLYMERS

BIOPOLYMERS - IMPACT ON CLIMATE CHANGE

BIOPOLYMERS VS CONVENTIONAL POLYMERS

- Data for modelling difficult to obtain, often confidential
- ➢ Production process not mature enough (PE = +50 y. VS PLA = 15 y.)
- ➤ Much smaller production scale (about 20% of all polymeric materials)
- ➢ Big impact of feedstock (possible solution: 2nd and 3rd generation feedstocks)
- Big impact of fermentation and extraction (a lot of room for improvement)

BIOPOLYMERS - HOT SPOTS - CLIMATE CHANGE

PHB SYNPOL - HOT SPOTS CLIMATE CHANGE & EOL

PHB Synpol EOL

ILCD 2011 Midpoint+ V1.06 total midpoint score, climate change (%)

PHB SYNPOL - COMPOSTING VS INCINERATION

PHB SYNPOL - AD VS INCINERATION WTE

15

CONCLUSIONS

- LCA impact on climate change most popular, but not the only assessment parameter
 - 16 impact categories according to ILCD Midpoint method
- Biopolymers Biobased AND/OR Biodegradable
- Biopolymers production hotspots (general):
 - Electricity, Feedstock
- Biopolymers production technologies need for optimization
- PHB Synpol production hotspots:
 - Feedstock (pyrolysis), Emissions (Gas flaring)
- EOL PHB: AD best, Landfilling worst
 - AD>WtE>Composting>Incineration>Landfilling

THANK YOU

